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S. Chong et al., “Nanoelectromechanical (NEM) Relays Integrated with CMOS SRAM for 
Improved Stability and Low Leakage”, ICCAD 2009.
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Fabrication limitation

Casimir and vdW Force

Tunneling currents

Adhesion Forces
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• Apply pre-bias (explored in literature): problem with 
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Some	  possible	  solutions

• Dual gate structures

• Innovative fabrication process

• Immerse in liquid dielectric

• Explore new materials and modes of operation
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• Sub-threshold	  
• Parallelism 
• Power Gating	  
• Asynchronous	  
• Adiabatic

• SOI/	  FDSOI	  
• FinFET	  
• TFET	  
• III-‐V	  FET	  
• NWFET	  
• CNTFET	  
• NEMS

Circuit Level Approach Device Level Approach

+

NEMS-‐Based	  Adiabatic	  Logic

Slide courtesy of S. Houri - HOURI S., et al. Limits of CMOS Technology and Interest of NEMS Relays for Adiabatic Logic Applications. 2015.
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S. Paul, A. M. Schlaffer, J. A. Nossek, “Optimal charging of capacitors,” IEEE Transactions on 
Circuts and Systems –I, vol. 47, pp. 1009-1016, July 2000. 

Slide courtesy of S. Houri - HOURI S., et al. Limits of CMOS Technology and Interest of NEMS Relays for Adiabatic Logic Applications. 2015.



2CV
T
RCEadiabatic ≅

R

C

T T

0

Vdd

+
-

Adiabatic Charging of Capacitors

S. Paul, A. M. Schlaffer, J. A. Nossek, “Optimal charging of capacitors,” IEEE Transactions on 
Circuts and Systems –I, vol. 47, pp. 1009-1016, July 2000. 

Slide courtesy of S. Houri - HOURI S., et al. Limits of CMOS Technology and Interest of NEMS Relays for Adiabatic Logic Applications. 2015.



2CV
T
RCEadiabatic ≅

R

C

T T

0

Vdd

RC
TESF
2

≅

+
-

Adiabatic Charging of Capacitors

S. Paul, A. M. Schlaffer, J. A. Nossek, “Optimal charging of capacitors,” IEEE Transactions on 
Circuts and Systems –I, vol. 47, pp. 1009-1016, July 2000. 

Slide courtesy of S. Houri - HOURI S., et al. Limits of CMOS Technology and Interest of NEMS Relays for Adiabatic Logic Applications. 2015.



Adiabatic Charging of Capacitors

Slide courtesy of S. Houri - HOURI S., et al. Limits of CMOS Technology and Interest of NEMS Relays for Adiabatic Logic Applications. 2015.



Adiabatic Charging of Capacitors

Slide courtesy of S. Houri - HOURI S., et al. Limits of CMOS Technology and Interest of NEMS Relays for Adiabatic Logic Applications. 2015.



REMEMBER

Slide courtesy of S. Houri - HOURI S., et al. Limits of CMOS Technology and Interest of NEMS Relays for Adiabatic Logic Applications. 2015.



2CV
T
RCEadiabatic ≅

REMEMBER

Slide courtesy of S. Houri - HOURI S., et al. Limits of CMOS Technology and Interest of NEMS Relays for Adiabatic Logic Applications. 2015.



F

C

i
R

i

φ

input

input

φ

T T T T

T T T T

T T T T

Adiabatic Logic

Slide courtesy of S. Houri - HOURI S., et al. Limits of CMOS Technology and Interest of NEMS Relays for Adiabatic Logic Applications. 2015.



F

C

i
R

i

φ

input

input

φ

No hot 
switching

T T T T

T T T T

T T T T

Adiabatic Logic

Slide courtesy of S. Houri - HOURI S., et al. Limits of CMOS Technology and Interest of NEMS Relays for Adiabatic Logic Applications. 2015.



P. Teichmann, 2012

CMOS Adiabatic Logic

Slide courtesy of S. Houri - HOURI S., et al. Limits of CMOS Technology and Interest of NEMS Relays for Adiabatic Logic Applications. 2015.



P. Teichmann, 2012

TVICVCV
T
RCE ddleakageTdissipated ++≅ 22

2
1

StaticNon-Adiabatic
Adiabatic

CMOS Adiabatic Logic

Slide courtesy of S. Houri - HOURI S., et al. Limits of CMOS Technology and Interest of NEMS Relays for Adiabatic Logic Applications. 2015.



P. Teichmann, 2012

TVICVCV
T
RCE ddleakageTdissipated ++≅ 22

2
1

StaticNon-Adiabatic
Adiabatic

CMOS Adiabatic Logic

Slide courtesy of S. Houri - HOURI S., et al. Limits of CMOS Technology and Interest of NEMS Relays for Adiabatic Logic Applications. 2015.



CMOS Adiabatic Logic

Slide courtesy of S. Houri - HOURI S., et al. Limits of CMOS Technology and Interest of NEMS Relays for Adiabatic Logic Applications. 2015.



Why NEMS-Based Adiabatic Logic ?

Slide courtesy of S. Houri - HOURI S., et al. Limits of CMOS Technology and Interest of NEMS Relays for Adiabatic Logic Applications. 2015.



Why NEMS-Based Adiabatic Logic ?

1. No	  hot	  switching	  =>	  Increased	  switch	  lifetime

Slide courtesy of S. Houri - HOURI S., et al. Limits of CMOS Technology and Interest of NEMS Relays for Adiabatic Logic Applications. 2015.



Why NEMS-Based Adiabatic Logic ?

1. No	  hot	  switching	  =>	  Increased	  switch	  lifetime

2. Lower	  operating	  frequencies	  =>	  Commensurate	  with	  NEMS

Slide courtesy of S. Houri - HOURI S., et al. Limits of CMOS Technology and Interest of NEMS Relays for Adiabatic Logic Applications. 2015.



Why NEMS-Based Adiabatic Logic ?

1. No	  hot	  switching	  =>	  Increased	  switch	  lifetime

2. Lower	  operating	  frequencies	  =>	  Commensurate	  with	  NEMS

3. Adiabatic	  circuit	  =>	  Reduce	  losses	  associated	  with	  high	  voltage

Slide courtesy of S. Houri - HOURI S., et al. Limits of CMOS Technology and Interest of NEMS Relays for Adiabatic Logic Applications. 2015.



Why NEMS-Based Adiabatic Logic ?

1. No	  hot	  switching	  =>	  Increased	  switch	  lifetime

2. Lower	  operating	  frequencies	  =>	  Commensurate	  with	  NEMS

3. Adiabatic	  circuit	  =>	  Reduce	  losses	  associated	  with	  high	  voltage

4. NO	  LEAKAGE	  

Slide courtesy of S. Houri - HOURI S., et al. Limits of CMOS Technology and Interest of NEMS Relays for Adiabatic Logic Applications. 2015.



NEMS Adiabatic Logic

Slide courtesy of S. Houri - HOURI S., et al. Limits of CMOS Technology and Interest of NEMS Relays for Adiabatic Logic Applications. 2015.
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Robust Soldier Crab Ball Gate

• How much energy?

• Crabs usually eat algae. Crabs are 
omnivorous, meaning that they will eat 
both plants and other animals for 
sustenance.

• Energy Content of Algae: 5kcal for 3g

• Average weight of the crabs was 42g

• Suppose daily need is 50% of its weight: 
21g of algae and thus 35kcal

• 146440J of energy for daily operating a 
crab logic gate or 1.7W of power



What about the memory?



NEMS system



NEMS system

6x1 nm2 - 240 atoms 
a = 2.42 Å 
Y = 0.85 TPa 
T = 10 K
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2-DOF potential landscape
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Reset protocol

• Objective: move the system from an unknown state to known 
state 

• ΔS = kB log(2) 
• Qmin = kB T log(2)

A1 A1

A2 A2



Reset protocol
Quick and dirty: apply a positive force along Z on all atoms
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Reset protocol
Quick and dirty: apply a positive force along Z on all atoms

WRONG: it is not possible to control the velocity!
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Reset protocol

Controlled way: apply a set of forces in to gently put the system 
in the desired configuration
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Controlled way: apply a set of forces in to gently put the system 
in the desired configuration
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Switch protocol

• Objective: move the system from a known state to another 
known state 

• ΔS = 0 
• Qmin = 0

A1 A1

A2 A2



Switch protocol

Controlled way: apply a set of forces in to gently put the system 
in the desired configuration

t0 t1 t2 t3 t4 t5 t6

f0Up

fMaxUp

f0Dw

fMaxDw
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Switch protocol

Controlled way: apply a set of forces in to gently put the system 
in the desired configuration 
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Switch protocol

Wrong way: apply the switch protocol from the wrong initial state



Switch protocol

Wrong way: apply the switch protocol from the wrong initial state



Switch protocol

Wrong way: apply the switch protocol from the wrong initial state

Qmin > 2QL



Thank you for your attention!

igor.neri@nipslab.org


